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Abstract. We describe an application of DNorm – a mathematically principled 
and high performing methodology for disease recognition and normalization, 
even in the presence of term variation – to clinical notes. DNorm consists of a 
text processing pipeline, including the BANNER named entity recognizer to lo-
cate diseases in the text, and a novel machine learning approach based on pair-
wise learning to rank to normalize the recognized mentions to concepts within a 
controlled lexicon. DNorm achieved the second highest performance in Task 1a 
(named entity recognition) and the highest performance (strict accuracy) in 
Task 1b (normalization). A web-based demonstration of DNorm is available at 
http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/DNorm/ 
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1 Introduction 

Concept recognition and identification in clinical notes has many applications, includ-
ing automated identification of patients at a high risk for complications, automated 
identification of clinical trial eligibility, and automatic error control in electronic med-
ical records. In this article we describe our approach to the ShARe / CLEF eHealth 
Task 1a (named entity recognition or NER) and Task 1b (normalization) [1]. We use a 
machine learning approach, including BANNER, a named entity recognizer utilizing 
conditional random fields and a rich feature approach [2, 3], and DNorm, a method 
for normalizing disorder mentions that uses a machine learning model learned directly 
from the training data [4]. The DNorm model is based on pairwise learning to rank 
(pLTR), and can represent synonymy, polysemy, and relationships that are not 1-to-1. 

1.1 Corpus Description 

The corpus provided by the organizers consists of clinical notes of 4 different types 
and is split into two sets [1]. The Training set contains a total of 199 clinical notes 
from 4 different types, described in Table 1. The Test set contains 100 clinical notes 
from 3 out of the 4 types present in the Training set, and is described in Table 2. 
Notes in the Training set range from about 150 bytes to about 13,200 bytes. The notes 



in the Training set total about 9,200 lines of text and 5,900 annotations. The minimum 
note size in the Test set was 0 bytes, and the maximum size was approximately 
14,000 bytes. The Test set contained a total of approximately 8,300 lines of text. 

Table 1. Count and average size of each type of clinical note in the Training set 

Type of Report Count (%) Average size (bytes) 
Discharge summary 61 (30.7%) 7,561 
ECG 54 (27.1%) 285 
Echo 42 (21.1%) 2,235 
Radiology 42 (21.1%) 1,941 

Table 2. Count and average size of each type of clinical note in the Test set 

Type of Report Count (%) Average size (bytes) 
Discharge summary 76 (76.0%) 7,178 
ECG 0 (0.0%) N/A 
Echo 12 (12.0%) 2,246 
Radiology 12 (12.0%) 1,717 

 
The Test set was not released until one week prior to results submission, therefore 

the only information about the Test set available during system development was the 
number of notes. Our team assumed, however, that the Training set would be repre-
sentative of the Test set. Comparing the Training and Test sets shows that while the 
average report sizes for each type are relatively similar, the mix of note types included 
is different. In addition to the Test set not containing any ECG notes, the percentage 
of discharge summaries is much higher in the Test set than in the Training set. This 
increases the overall average note length, since discharge summaries are significantly 
longer than the other note types. 

1.2 Lexicon Description 

The lexicon was created using the 2012AB release of the UMLS® Metathesaurus. To 
comply with the annotation guidelines, the concept identifiers (CUIs) were restricted 
to the 11 recommended disorder semantic types, and the SNOMED-CT source vo-
cabulary. For each restricted CUI, we computed the non-suppressed English syno-
nyms available in the Metathesaurus, and included those terms in the lexicon.  

Furthermore, based on our observations of the Training set, we made several major 
changes to the lexicon. The Training set contained several mentions annotated as 
“CUI-less”  because  the  corresponding  CUIs  lied  outside  the  recommended  guidelines,  
e.g.,   “left   ventricular   function”   and   “unable   to  walk.”  We   identified   the   “CUI-less”  
mentions occurring five or more times in the Training set, and appended those men-
tions  to  the  lexicon,  using  the  concept  ID  “CUI-less.”   

We observed from the Training set that adjective forms were freely substituted for 
the noun form for many words. While stemming handled many of these cases, many 
anatomical  terms  were  not  handled  well:  for  example,  “femoral”  is  the  adjective  form  



of  “femur”,  and  occasionally  completely  different  bases  were  used,  such  as  “optic”  as  
the  adjective  form  of  “eye”.  We  therefore  extracted  a  list  of  about  60  anatomic  adjec-
tive / noun pairs from UMLS and added a synonym containing the adjective form for 
every lexicon name containing the noun form.  

The Training set contained several abbreviations that are not found in the Metathe-
saurus. To  address  this,  we  used  the  Taber’s  dictionary  of  medical  abbreviations1. The 
Taber’s  dictionary  was  filtered  to  include  only  those  entries  where  the  expanded  form  
exact matched with a synonym of any restricted CUI, and the corresponding abbrevia-
tion was included in the lexicon. In all, 102 entries were added to the lexicon.  

Finally, we observed that several abbreviation mentions in the Training set re-
quired disambiguation, e.g., the mention  “AR”  matches  with   the  concept  “aortic   re-
gurgitation”   (CUI   C0003504)   as   well   as   the   concept   “rheumatoid   arthritis”   (CUI  
C0003873),   and   “CAD”   matches   with   the   concept   “coronary   heart   disease”   (CUI  
C0010068)   as   well   as   “coronary   artery   disease”   (CUI   C1956346). We refined the 
lexicon to include only one sense of an abbreviation in the following manner. We 
included only those CUIs wherein at least one term demonstrated evidence of the 
relationship between short and long forms, e.g., the CUI C0003504 contains the term 
“AR  – aortic  regurgitation,”  and  the  CUI C1956346  contains  the  term  “CAD  – coro-
nary   artery   disease,”   i.e.,   each   abbreviation   letter   matches   with   the   corresponding  
word’s   first   letter   in   long  form.  After  applying   this  pattern  rule,  some   terms  still   re-
quired   disambiguation   e.g.,   “MI”   matches   with   “myocardial   infarction”   as   well   as  
“mitral  incompetence.” We resolved these cases by preferring the sense that appears 
more frequently in the Training set. 

2 Methods 

We create two separate systems based on our previous research on disease name 
recognition and normalization [5 - 7], both of which are described in this section. The 
first is an application of MetaMap, and is used as a baseline rather than to create our 
submission for the task. The second system is an adaptation of DNorm to clinical 
notes, which has previously been applied to the NCBI Disease Corpus [8, 9]. DNorm 
is a methodology for locating and identifying diseases and disorders mentioned in 
biomedical text. DNorm uses a pipeline architecture, with modules to perform named 
entity recognition, abbreviation resolution, and concept normalization (grounding). In 
this study, we adapt DNorm to clinical notes by dropping the abbreviation resolution 
module and introducing a post-processing module for boundary revision. 

2.1 Sentence segmentation 

We segmented each clinical note into sentences using the built-in Java class BreakIt-
erator and manually created rules to correct its output. Examples of the rules we im-
plemented include removing a sentence break after the period  in  “Dr.”  and  consider-

                                                           
1http://www.tabers.com/tabersonline/view/Tabers-Dictionary/767492/0/Medical_Abbreviations 



ing a double newline to be a sentence break. Applying the sentence segmenter to the 
Training set resulted in about 9,900 sentences. 

2.2 MetaMap Baseline 

We developed a baseline system using the MetaMap application developed by the 
National Library of Medicine [10]. MetaMap is a highly configurable system for bio-
medical named entity recognition and UMLS normalization. Given a textual passage, 
MetaMap identifies the candidate UMLS concepts and the corresponding spans of the 
mentions. For this study, we used the MetaMap JAVA API to programmatically ac-
cess the MetaMap with the following settings. The source vocabulary was limited to 
the SNOMED-CT, and the semantic categories were restricted to the 11 disorder se-
mantic types as specified in the annotation guidelines.  

The baseline system uses the sentence segmentation module described in Section 
2.1, the MetaMap API, and a post-processing module. Given a clinical report as the 
input, the sentence segmenter splits the report into chunks and each chunk is fed into 
the MetaMap API to obtain the candidate CUIs and spans. For each sentence, the 
post-processing module validates the candidates in the following manner. The over-
lapping candidates are resolved using the longest span (or specific mention) criteria, 
e.g.,  “breast  cancer”  is  preferred  to  “cancer.”  The  candidates  that  require  disambigua-
tion,   e.g.,   “heart   failure”  maps   to  multiple  CUIs,   are   resolved  using   the  word   sense  
disambiguation module of the MetaMap. In addition, the module filters some generic 
mentions,  e.g.,  “allergies,”  “condition,”  “disease,”  “finding,”  etc. 

2.3 Named Entity Recognition 

The system used to create our submission operates in three steps: named entity recog-
nition, described in this subsection, followed by normalization and boundary revision, 
which are described in the following two subsections. We used the BANNER named 
entity recognizer, an open source NER system based on linear-chain conditional ran-
dom fields and a rich feature set. We used a dictionary feature with diseases from the 
UMLS Metathesaurus, as in previous work [3]. To reduce overfitting and increase the 
training performance, we set the labeling model to IO and the order to 1. We created a 
model that employed different labels for continuous and discontinuous mentions. 
Mentions tagged by the model as continuous were returned directly, but tokens la-
beled with the discontinuous mention tag were joined into a single discontinuous 
mention. This significantly reduced the confusion between continuous and discontin-
uous mentions, and allowed either 0 or 1 discontinuous mentions to be represented for 
each sentence. While this is clearly not a complete solution, we found that the majori-
ty of sentences with disjoint mentions only contain one. 

2.4 Normalization with DNorm 

DNorm is a technique for finding the best name from a controlled vocabulary such as 
SNOMED-CT for a given mention. It first converts both the mention and the names 



from the controlled vocabulary to a TF-IDF vector space. It then uses a regression 
model learned directly from the training data to score each name in the controlled 
vocabulary against the mention provided as query, and returns the top ranked name. 

Vector Space Model. Mentions output by BANNER are tokenized by using 
whitespace and punctuation as boundaries. Punctuation, whitespace and stop words 
from the English stop words set in Lucene are removed. Digits are retained, and each 
token is converted to lower case and stemmed with the Porter stemmer. 

We convert the mentions and names to vectors by first defining a set of tokens con-
taining the tokens from all mentions from the Training set and all names from the 
controlled vocabulary. We then convert both mentions and names to TF-IDF vectors 
within the space defined by this token set [11]. The TF of each element in the vector 
is calculated as the number of times the corresponding token appears in the mention 
or name. The IDF for each element in mention and name vectors is calculated from 
the number of names in the lexicon that contain the corresponding token:   

𝐼𝐷𝐹 = log
𝑐𝑜𝑢𝑛𝑡(𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑛𝑎𝑚𝑒𝑠  𝑖𝑛  𝑙𝑒𝑥𝑖𝑐𝑜𝑛)

𝑐𝑜𝑢𝑛𝑡(𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑛𝑎𝑚𝑒𝑠  𝑖𝑛  𝑙𝑒𝑥𝑖𝑐𝑜𝑛  𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔  𝑡ℎ𝑒  𝑡𝑜𝑘𝑒𝑛) + 1
 

To correct for the varying lengths of each mention or name, all vectors are normalized 
to unit length. 

Candidate Generation with Ranking. Given the vector space model for mentions 
and names, normalization can be seen as a ranking task between tuples containing one 
vector representing a mention (m) and one vector representing a lexicon name (n). 
Finding the best name can be seen as a scoring task mapping from 〈𝑚, 𝑛〉 onto the set 
of real numbers. Cosine similarity has typically been used for this purpose, but cosine 
similarity is not robust to term variations not present in the lexicon. Instead, we can 
learn a scoring function by introducing a weight matrix, W: 

𝑠𝑐𝑜𝑟𝑒(𝑚, 𝑛) = 𝑚்𝑊𝑛 = ෍ 𝑚௜𝑊௜௝𝑛௝

|𝒯|

௜,௝ୀଵ

 

This model allows us to learn both positive and negative correlations between tokens, 
and is capable of representing synonymy and polysemy. Since our vectors are already 
unit-length, it is also equivalent to cosine similarity when 𝑊 = 𝐼, the identity matrix. 

Training DNorm with Pairwise Learning to Rank. We use the training data to 
learn weights that will result in a higher score for matching pairs 〈𝑚, 𝑛ା〉 than for 
mismatched pairs 〈𝑚, 𝑛ି〉. We express this constraint as 𝑠𝑐𝑜𝑟𝑒(𝑚, 𝑛ା) >
𝑠𝑐𝑜𝑟𝑒(𝑚, 𝑛ି), and therefore choose 𝑊 so that 𝑚்𝑊𝑛ା > 𝑚்𝑊𝑛ି. This is a pair-
wise learning to rank (pLTR) approach, following [12]. We initialize 𝑊 to the identi-
ty matrix 𝐼 and optimize via stochastic gradient descent (SGD) [13]. In SGD, a train-
ing instance is selected and classified according to the current parameters of the mod-
el. If the instance is classified incorrectly, then the parameters are updated by taking a 
step in the direction of the gradient. We use the ranking loss [14], so that if 



𝑚்𝑊𝑛ା − 𝑚்𝑊𝑛ି < 0, then 𝑊 is updated as 𝑊 ← 𝑊 + 𝜆(𝑚(𝑛ା)் − 𝑚(𝑛ି)்). 
The learning parameter 𝜆 controls the size of the change to 𝑊.  

Many concepts have multiple names. Instead of iterating through all combinations 
of 〈𝑚, 𝑛ା, 𝑛ି〉, we instead iterate through all combinations of 〈𝑚, 𝑐ା, 𝑐ି〉, where 𝑐ା is 
fixed as the annotation for 𝑚, and 𝑐ି is any other concept from the lexicon. Since we 
intend the best-matching name for 𝑐ା to be ranked higher than the best-matching 
name for all other concepts, we determine 𝑛ା and 𝑛ି  as: 

𝑛ା = argmax
௡∈௡௔௠௘௦(௖శ)

𝑠𝑐𝑜𝑟𝑒(𝑚, 𝑛) 

𝑛ି = argmax
௡∈௡௔௠௘௦(௖ష)

𝑠𝑐𝑜𝑟𝑒(𝑚, 𝑛) 

2.5 Boundary Revision 

We implemented a boundary revision module which uses feedback from the normali-
zation to optimize the NER span tagged. This module considers adding or removing 
tokens on the left and the right of the span, and uses a manually-constructed set of 
rules to decide whether to accept the change or not. The boundary revision module 
adds one token to the left or to the right if the normalization score of the new mention 
is at least 0.05 above the score for the current mention. Alternatively, the boundary 
revision module will also add one token to the left if the resulting mention is an exact 
match for any name in the lexicon. Tokens are not removed from the right, as this 
tends to delete headwords. Tokens are removed from the left, however, if the best 
concept for the new mention is the same as the best concept for the old mention, and 
the difference between the two scores is at least 0.3, which is relatively large. 

The boundary revision module also implemented some rule-based post-processing 
to correctly handle both NER and normalization of several consistent patterns that 
BANNER  was  not  able  to  learn.  One  example  is  “w/r/r,”  which  is  an  abbreviation  for  
concepts   “wheezing”   (CUI   C0043144),   rales   (CUI   C0034642),   and   ronchi   (CUI  
C0035508), though we also   observed   this   abbreviation   to   be   written   as   “r/w/r”   or  
“r/r/w.” 

3 Results 

We used the official task evaluation measures. These consist of the strict f-measure 
and overlapping f-measure to evaluate named entity recognition, and strict accuracy 
and relaxed accuracy for evaluating normalization. We used the definitions provided 
in the task definition, and used the official scoring script for system evaluation during 
development. Precision, recall, and F1 measure are defined as follows: 

𝑝 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
  𝑟 =

𝑡𝑝
𝑡𝑝 + 𝑓𝑛

  𝑓 =
2𝑝𝑟
𝑝 + 𝑟

 

where tp is defined as the number of spans that the system returns correctly; for the 
strict measure, the span returned must match on both the left and the right side, the 
overlapping measure only requires the spans to have some text in common. Both 



measures are micro-averaged. The strict accuracy measure for normalization is de-
fined as follows: 

𝑠𝑡𝑟𝑖𝑐𝑡  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑢𝑛𝑡(𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑠𝑝𝑎𝑛  &  𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑐𝑜𝑛𝑐𝑒𝑝𝑡)

𝑐𝑜𝑢𝑛𝑡(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑠𝑝𝑎𝑛𝑠)
 

This is equivalent to the standard definition for recall if a true positive is taken to be 
both the span matching exactly and the concept being correctly identified. Mentions 
marked   as   “CUI-less”   are   evaluated   as   if   “CUI-less”   were   their   concept.   In other 
words,   the   system  must   return   “CUI-less”   or   the   concept  will   be  marked   incorrect.  
The relaxed accuracy is defined as follows: 

𝑟𝑒𝑙𝑎𝑥𝑒𝑑  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑢𝑛𝑡(𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑐𝑜𝑛𝑐𝑒𝑝𝑡)
𝑐𝑜𝑢𝑛𝑡(𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑠𝑝𝑎𝑛)

 

Because relaxed accuracy only measures the ability to normalize spans that are cor-
rect, it is possible to obtain very high values for this measure by simply dropping any 
mention with a low confidence span.  

3.1 Official Evaluation Results 

Our team is listed as TeamNCBI in the official task results. TeamNCBI.1 corresponds 
to DNorm without boundary revision and TeamNCBI.2 corresponds to DNorm with 
boundary revision. 

Table 3. Official evaluation results for Task 1a (NER), Strict 

System Precision Recall F-measure 
DNorm, without boundary revision 0.768 0.654 0.707 
DNorm, with boundary revision 0.757 0.658 0.704 

Table 4. Official evaluation results for Task 1a (NER), Relaxed 

System Precision Recall F-measure 
DNorm, without boundary revision 0.910 0.796 0.849 
DNorm, with boundary revision 0.904 0.805 0.852 

Table 5. Official evaluation results for Task 1b (Normalization) 

System Strict Relaxed 
DNorm, without boundary revision 0.587 0.897 
DNorm, with boundary revision 0.589 0.895 

4 Discussion 

Several aspects of the annotations contributed to our results. First, the annotators were 
instructed to annotate all disorders mentioned, even if not a current concern or not 
experienced by the patient, and also only annotate disorders that are referenced textu-
ally, rather than disorders requiring some inference. These instructions favored an 



NER approach based on local textual inference, such as the conditional random field 
with rich feature set approach used by BANNER. In addition, the annotators were 
requested to annotate spans that were an exact match for the concept being annotated. 
In particular, negation is ignored and anaphoric references are not annotated.  

There were two primary difficulties we found with our approach based on localized 
textual inference. First, discontinuous mentions posed a significant difficulty. In addi-
tion, there were some annotations that appeared to require inference from the remain-
der  of   the  clinical  note.  For  example,   “aspiration”   is   sometimes  mapped   to   “pulmo-
nary aspiration” (CUI C0700198) and sometimes to “aspiration pneumonia” (CUI 
C0032290). Another example is “complications,”  which was mapped to “complica-
tions of treatment” (CUI C0679861) and also to “late effect of complications of pro-
cedure” (CUI C0160815). It was not entirely clear, however, whether such examples 
indicated that the context should be considered or were merely reflections of the diffi-
culty in maintaining annotation consistency. Our methods attempted to learn the most 
frequent sense based on the localized text, and did not consider the broader context of 
the clinical note. 

5 Conclusion 

In conclusion, we have successfully applied our DNorm method for finding disorder 
mentions to clinical notes. The method uses a pipeline approach to text processing, 
primarily based on localized textual inference, and learns term variations directly 
from the training data by applying a learning algorithm based on pairwise learning to 
rank. We believe that this method may be widely applicable. For future work, we 
intend to improve our ability both to infer the presence of discontinuous mentions and 
to condition our normalization inferences on the context present in the remainder of 
the clinical note.  
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